NA NORTHERN ARIZONA
UNIVERSITY
School of Informatics, Computing, and Cyber Systems

To: Robert Severinghaus
From: Team 3 Wildfire Drone
Date: March 26th, 2021
Subject: Testing Results Report

This report outlines the testing phase of the engineering design process for our capstone project. System
testing is essential to determine whether the product meets the requirements specifications of the project.
Our design team conducted four tests. The first test is a unit test, matrix (UTM) which tests requirements
2.8 and 2.8.1. Requirement 2.8 states that the system should be able to function autonomously while
requirement 2.8.1 further specifies that data transmission between the drone and base station should
occur autonomously. The second test is a unit test, step by step (UTS) that determines whether
requirement 2.9 is met. This requirement states that the system should integrate the fire classification,
object detection and image segmentation algorithms produced by the Computer Science team on the
drone subsystem. The third test is a second unit test, step by step (UTS) that tests requirement 2.7
determining whether the system includes a user friendly interface that interacts with the drone subsystem
providing the user with sensor, GPS information as well as images of the fire from both the HD and
thermal cameras. The final test is an integration test of requirement 2.6 and 2.6.1 through 2.6.4. These
requirements state that the data must be transmitted from the drone microcomputer to a ground station
computer. The data for transmission should include images, sensor data such as humidity, ambient
temperature and GPS location. Data transmission will occur through single hop communication by
means of Software Defined Radio (SDR) from the drone subsystem to the ground station and vice versa.
Our design team invested approximately 12 hours to perform each of these tests. Most of our tests had to
be simulated due to an incomplete integration of our entire system. Therefore, the results of the tests we
conducted were of parts of the system rather than the system as a whole. Besides this fact, the tests that
we could perform resulted in success through a visual representation of our expected results.

EE486C:Capstone Design
Team 3: Wildfire Drone
March 26th, 2021

Introduction to the System:

Client Background

Our project is sponsored by Dr Fatemeh Afghah who is an assistant professor at Northern
Arizona University (NAU). She is leading this project along with her Ph.D. student, Alireza
Shamshoara. Alireza Shamsoshoara is a Ph.D. student of Dr. Fatemeh Afghah at Northern Arizona
University and he is overseeing the design of the project. He has a lot of experience with SDR
communication and software. As a Senior IEEE member and the Director of Wireless Networking and
Information Processing Laboratory, she will provide our design team with lab space and equipment
necessary to complete the project.

The Problem Being Solved

With the rise in wildfires in recent years due to global warming, there is a demand for solutions
to address this issue. Our design team intends to address this issue by creating a system that monitors
wildfires by utilizing unmanned aerial vehicles (UAVs). This system aids in providing relief from the
severity of the effects of wildfires. Our wildfire monitoring system provides live feed of the state of
ongoing wildfires to give responders a plan of action.

An Overview of the Design

Our design team was given the opportunity to contribute to our client’s ongoing effort to monitor
wildfires using unmanned aircrafts. We were to design a wireless communication system that uses
software defined radio (SDR) to transmit aerial data from a drone to a base station. The data from the
SDR receiver will be processed at the ground station through an interface with a personal computer to
display images of the fire in real time.

EE486C:Capstone Design
Team 3: Wildfire Drone
March 26th, 2021

System Architecture:

Integration\ Unit Test Matrix
Drone Camera \
Temperature/Humidity Drone Batteiy (Zenmuse X48S)
Power Bank (5V) Sensor \

Drone
Unit Test Step-by-Step GPS/Compass Module (DII Matrice 200)

Drone Computer Mode 2: White Hot

(NVIDIA Jetson Nano) (FLIR Vue Pro R)
Mode 3: Green Hot
HD Camera
(Pi Camera) Record Stop/Start Function

Unit Test Step-by-Step ‘\

Thermal Camera

/ Drone Subsystem

~

Communication
Subsystem

Data Transmitter/Receiver
(Ettus B205-mini)
Base Station

Data Transmitter/Receiver

(Ettus B210)

Base Station
Subsystem

(

Figure 1. Highlighted Tests on System Architecture

For our testing, we decided to conduct four types of tests on our system: one Unit Matrix Test
(UTM), two Unit Step-by-Step Tests (UTS), and one Integration Test. In the figure above, it is outlined
and defined where each test was conducted in our system architecture. Our matrix test and integration
test involved utilizing the interaction of each subsystem with each other as a complete system. As for
each unit step-by-step test, we chose to test one component of the drone subsystem and the base station
subsystem. On the drone subsystem we wanted to test the drone computer, the Jetson Nano, and the CS
algorithms integrated on the microcomputer. Meanwhile, on the base station we want to test the
functions of the GUI our design team developed.

EE486C:Capstone Design
Team 3: Wildfire Drone
March 26th, 2021

Requirements, Status, Type of Test:

Status

inspect

inspect

1I1L° 18

N/A

:

inspect

Req # Requirement

1

1.1

1.3.2

2.1

2.2
221

2221
23
24

Standards.
The frequency signal from the software defined radio (SDR) should be between
70MHz to 6GHz

Pin number: 4 Pins.(1 power+ 2, data+ 3, data- 4, power-)

Engineering Requirements.

System must interface between the two cameras and Jetson nano microcomputer in
order to capture aerial images and stream live videos

The two cameras must capture aerial images

The drone camera: Pi camera

This camera resolution should be 720p

Utilize the jetson nano to compress the captured images and video before transmission
System interface between ground computer and SDR receiver

Processes the data from the SDR receiver and generates the images or video that will

24.1
inspect 2.5
Integrate * 2.6
integrate 2.6.1
UTS 2.7
UTM e 2.8
UTM * 2.8.1
UTS & 2.9
inspect N/A 2.1

3
inspect 3.1
inspect 343

display to a graphical user interface (GUI).

System should utilize a Global Position System (GPS) on the drone microcomputer
inorder to pinpoint the exact location of the fire

The data from the drone microcomputer must be transmitted to a ground station
computer

Data transmitted: images, sensor info, and GPS location

Data transmission will occur through single-hop communication

Utilize the SDR Ettus B210 at the base station to receive data from the drone

System should include a user friendly interface to select between two viewing modes
providing user with sensor and GPS information, or feed from either cameras

The system should be able to function autonomously

Data transmission between the drone and base station should occur autonomously
System must integrate the fire classification, object detection and image segmentation
algorithms from the Computer Science team onto the drone microcomputer

Produce 3D prints on AutoCad of case mountings to house devices on the drone while
being mindful of aerodynamics (optional)

Constraints.

Utilize the SDR Ettus B205-mini for drone communication

Thermal Camera: 4.8V - 6.0V, 2W

EE486C:Capstone Design
Team 3: Wildfire Drone
March 26th, 2021

Most Important Requirements:

The requirements that are most important in our project are requirements 2.6, 2.8, 2.8.1 and 2.9.
Requirement 2.6 states that data transmission must occur from the drone subsystem through the
microcomputer to the ground station computer. The data that should be transmitted are images, sensor
information and GPS location. Data transmission should be driven by Software Defined Radio (SDR). In
effort to monitor wildfires, our client is interested in obtaining information about the environmental
conditions of the area during the fire, the location and relevant images of the state of the fire. The sensor
data will provide information about the current ambient conditions at the state of the fire such as the
temperature, humidity and air pressure. Collectively these data provide the user with a complete
understanding of the nature and severity of the fire. Retrieving accurate data and information about the
state of a wildfire during the early stages of the fire is essential for removing the fuel from the area and
stopping the expansion of the fire to prevent further harm or damage. Failure to meet this requirement
impedes the user from obtaining a complete understanding of the nature of the fire.

Requirement 2.8 states that the system should be able to function autonomously. In addition,
requirement 2.8.1 states that data transmission between the drone subsystem and base station system
should occur autonomously. The automatic functionality of our system is essential to the overall purpose
of the product. Our client plans to utilize UAVs as a safe and inexpensive method to capture aerial
images and provide real time data feed from the location of the fire. This is realized through automation.
If this requirement is not met then the system would not be able to operate as specified by our client.

Requirement 2.9 states that our system must integrate the fire classification, object detection and
image segmentation algorithms of the Computer Science team. Fire classification identifies the images
with fire that is detected through the camera feed and ensures that this image is sent to the user for
inspection. Object detection identifies objects such as people, animals, cell phones etc that are within the
vicinity of the fire. These algorithms filter the camera feed and provide the user with relevant
information about the state of the fire. This is essential to our client’s effort to monitor wildfires.
Without successful completion of this requirement the user would be unable to receive only the relevant
information about the state of an active fire.

Types of Tests:

Descriptions

Unit Test Matrix: Cataloging a list of repeatable tests on one axis—for example, different tasks
to accomplish, listed in the first column; and a list of items to be tested on the other axis—operating
systems on which the tasks are to be done, listed on the top row of the table.In our system this was
performed to check the cameras (HD and thermal) turned on and capture images automatically and
thermal cameras can be operated as different modes (mode 1: fusion, mode 2: white hot, mode 3: green
hot). Meanwhile, GPS, compass, temperature module and humidity sensors can take readings
automatically.

EE486C:Capstone Design
Team 3: Wildfire Drone
March 26th, 2021

Unit Test Step-By-Step: Showing or explaining each stage in a process; happening or done in a
series of steps or stages. It is like our whole capstone simulation, we only use GUI to check if the drone
can receive command and send the correct file to the base station , then showing on the GUIL

Integration Test: The phase in software testing in which individual software modules are
combined and tested as a group. Integration testing is conducted to evaluate the compliance of a system
or component with specified functional requirements. It occurs after unit testing and before validation
testing. Our EE team and CS team are both working on this capstone project. They mostly get charged
for the software part, our EE takes the hardware part. This test is to make sure there is no mistake
happening when we combine the hardware and software into a whole system. The system integrates the
drone, communication, and base station subsystems.

Inspection: An observation of the design requirement is noted to determine whether it has been
met. With our system, there were many requirements where we only had to observe whether or not it
appeared in the system such as using certain devices like a specified camera or device.

Major Tests:

For our system, we decided to perform several tests and of those tests, the most important ones
we conducted involved components of the system and the system as a whole. These tests were necessary
to ensure the operations of the system would be simple and would outline the changes to our project that
would be needed.

On the drone subsystem of our project, we decided to perform a unit step-by-step test on the
operations of the drone. In this test, the CS team had integrated their algorithms to our system and we
wanted to ensure the functionality of those algorithms on the hardware setup. Therefore in this test, we
had a process in which we could switch between the different tasks of the drone that were dependent on
the CS algorithms such as object detection, segmentation, and classification. If we were able to initialize
the programs by changing a json file and the drone began operations, then we considered the test to be
successful.

Another major test we conducted was at the base station, where we wanted to conduct the
practicality and operation of the Graphical User Interface. For this test, we used the unit step-by-step,
this way we could iterate through the buttons of the GUI to see if it had produced the output we expected
for a user. On the GUI there exist several buttons that would determine the function of the drone as well
as what is to be displayed onto the base station. The process of this test required the base station of our
system to be set up as well as the GUI running on the base station as well. Additionally to see if the
output of the buttons on the GUI, we opened the json file that would be manipulated and later
transmitted. To conduct the test we would click each button of the GUI and see if there was a change to
the json file and if there was a change to the file we would pass the test with each button.

We had also performed a unit matrix test on the entirety of our system, which was split up into
sub tests this way we could divide certain operations to be tested. For this test we wanted to see the
autonomous operation of the system. In this test, we tested the cameras and sensors of the drone

EE486C:Capstone Design
Team 3: Wildfire Drone
March 26th, 2021

computer, as expressed in Appendix C and Appendix D, as well as the communication between the
drone subsystem and the base station. For the cameras, both the HD Camera and thermal camera, we
wanted to see that when their task was run that we would receive an image captured by either camera
that would be ready for transmission. If when the json file was changed to capture an image from either
camera and the drone would perform the operation and the image was present in a designated file, we
would consider the test to be a pass. For the sensors on the drone, we want to see that the sensors would
begin reading and writing to a json file when the program of the drone runs. We determine the success
of this portion of the test if the values of the json file display measurements and continuously change
those values as the program runs. The last section of this test involved the communication of the drone
and base station. In this section, we would transmit text from the base station to the drone and then we
would transmit text or images from the drone to the base station. To conduct this test, we produced a text
file on the drone system to be sent to the base station, then we used an image to be sent to the base
station and finally we produced a text file at the base station to be sent to the drone. The test was
successful if the same text or image was received at the designated receiver.

Analysis of Results:

Unit Test, Step by Step (UTS)

The first unit test, step by step (UTS) examines whether our system integrates the fire
classification, object detection and image segmentation algorithms of the Computer Science team. Our
design team was unable to integrate the image segmentation algorithm since the computer science team
is currently working on completing it. Hence, this unit test only encompasses the fire classification and
object detection algorithms. Under this test condition, the project was successful. These algorithms were
executed upon user request. When fire classification was requested, the fire classification model began
to execute enabling the camera feed which identified whether a fire was in view or not and indicated the
percent accuracy of that prediction. In addition, the request of object detection by the user resulted in the
execution of the object detection model and enabled the camera feed. The camera feed identified the
objects in view with bounding boxes and a descriptive label of that object as well as the percent
accuracy of that prediction. The integration of the fire classification model was successful 80% of the
time while the object detection algorithm was successful 100% of the time. The result was unexpected
for the fire classification model. However, this observation was clarified by the computer Science team
who expressed that the client has requested that these algorithms be executed after detecting a fire.
Hence, the camera feed would not turn on but these algorithms would be expressed in the captured
image. Currently, the Computer Science team is modifying their algorithm to incorporate this change.
Hence, there still remains bugs and errors that they need to fix.

EE486C:Capstone Design
Team 3: Wildfire Drone
March 26th, 2021

Unit Test Matrix (UTM)

The unit test matrix (UTM) examines whether the system is able to function autonomously. This
tests requirement 2.8. It consists of four parts. The first part of the test examines whether the two
cameras are able to turn on and capture images automatically. Our client has requested that we utilize
thermal and HD cameras to capture aerial images. The test was successful under this test condition. This
was an expected result. The second part of the test examines whether the thermal camera is able to
switch between three viewing modes. For the modes, we wanted to see the thermal camera receive
commands from the Jetson Nano to switch between the color palettes of whitehot, greenhot and fusion.
In order to conduct this test we would manually change the file that would manipulate the tasks of the
drone. For this test, we expected to see the result of an image with the specified color palette in a path
directory specified in our code. As we iterated through each color, we received the expected image in the
path directory for thermal images on the drone, which outputted the images in Figure 2. Therefore, the
results of this test were as expected.

a. White Hot b. Green Hot c. Fusion
Figure 2. Thermal Images Output from Test

The fourth test was to determine if text can be transmitted and received from the base station to
the drone subsystem and vice versa automatically. In addition, it examined whether images can be
transmitted from the drone subsystem and received at the base station. Since our client only lets us use
one device so we have to only send text or pictures for the drone to the base station (can only use one
channel to transmit), we generate a command file to determine which type of file we are going to receive
on the base station. Under this test condition, automatic transmission of text was successful 100% of the
time when transmitting from the base station to the drone. Our initial test trial failed because of
difficulties in setting up the hardware for optimal transmission. Automatic transmission of images was
successful 100% of the time for images produced from the thermal camera. However, the images
captured through the HD camera were often distorted and resulted in data loss where only a fraction of
the image is sent. The difference between these two images is that the thermal camera images are small
within 100 KB or lower while the HD camera images tend to be larger than 200 KB. Our design has
limitations in the size of the image that it can transmit. It exhibits distortions and loss of data when the
images are above 200 KB. These results were expected since we understood and were working towards

EE486C:Capstone Design
Team 3: Wildfire Drone
March 26th, 2021

improving the design of our transmission process. However, the raspberry Pi camera was supposed to be
used in our design but since this camera was damaged we could not manipulate the size of the images
that were produced. Our design team plans to resize the image captured by the raspberry Pi camera in
order to ensure optimal transmission through the SDR and eliminate the issue of data distortion and loss
in the process.

Unit Test, Step-by-Step (UTS)

Another test was conducted on the operations and functions of the GUI at the base station. At the
time we were testing the GUI the interface was not fully complete so we could not test every function
we had intended. Therefore, we could only test the available functions on the GUI, in this case it was the
classification, object detection, and thermal camera with a white hot view. Additionally because our
system was not quite complete with each subsystem fully integrated with one another we had to simulate
most of the operations at the base station. With this test we determined that the GUI was fully functional
and produced the results that we expected to an extent. For instance, when we clicked on classification,
it manipulated the json file that was then sent to the drone subsystem and then the drone began the
classification protocol, but we are unable to send the classification image from the drone to the base
station meaning we are unable to display it to the GUI. This is the case for the other buttons of the GUI
as well. Therefore this test we considered as only being partially passed.

Integration Test

The integration testing was successful for the majority in task testing and sensor information.
The success was shown when the base station would create a task file and that file would be sent to the
drone in order to perform the task. We were able to determine the operations of the drone through the
terminal output on the drone which would print the current task given. We were able to witness this
result with each of the tasks we defined. Our system was not fully integrated therefore we had issues
operating the system as a whole which could not be tested. Additionally in this test we also tested
whether the sensor information on the drone would be sent to the base station and displayed on the GUI.
However, when we transmit the sensor information from the drone to the base station, there is a 37%
chance that the file sent could be altered, this was discovered after testing this transmission 50 times.

As an integration GUI and base station, we mostly finish all the tasks. Currently, we can power
up our GUI on the GUI and show the data or picture base on a specified folder. We are able to send the
command by text file from the base station to the drone. The command does not change after
transmission. However, since we have not integrated all the work with the CS team. We are unable to
tell the drone to correctly execute all the tasks files such as segmentation and gather GPS data.

Our testing process revealed that the most testing requirements were indeed met with the
exception of the GPS sensor module not being implemented.

EE486C:Capstone Design
Team 3: Wildfire Drone
March 26th, 2021

Lessons Learned:

The testing process was difficult since the HD camera code and sensor code was not integrated
into the system. This is a task that the Computer Science team had to perform since only one person is
familiar with the structure of this particular python script. Due to the timing sensitivity of our testing
paper, our design team was not able to wait until the computer science team had integrated our code. As
a result our design team conducted simulations to facilitate specific functions in each test. For example
to test the operation of the HD camera our design team executed the python script which enabled the HD
camera and captured an image. This script will be integrated into the overall system which enables the
HD camera to turn on upon user request, capture an image and transmit the image to the base station
using the SDR. Without complete integration of certain components of our system such as the sensors
and the HD camera, we were not able to completely test the operations of the system to the extent that
we had intended initially.

During testing our design team was able to modify part two of the unit test matrix (UTM) which
switches between the three modes of the thermal camera. Our design team removed a delay in execution
of the camera feed thereby enabling improving performance and enabling the user to access the various
thermal camera modes at a faster rate. When testing the switching of the modes on the thermal camera,
we did not have any difficulties or failures. However, we did run into some problems with other tests
where we made adjustments as we continued, to applicable parts of the system. With many of our tests,
we were able to discover ways that would improve not only the functionality of the system but improve
the performance as well. For instance, as mentioned before we discovered the limitations to the size for
which we are able to transfer images without outputting some distortion on the receiving end.

In addition, during the first UTM test to determine whether the system functions autonomously,
our team simulated the automatic transmission of text and images through the SDR. This was done to
meet the deadline of this testing report. The python script for the software defined radio in both the
drone and base station subsystems [Appendix A and B] is currently pending to be integrated by the
Computer Science team into the entire system. Automatic transmission is driven by a command text file
that must be empty to enable transmission of text files and it must be written to to enable image
transmission. Our design team uses two different ways to transmit text and picture, we try to open two
different channels to receive each type of file separately with only one pair of devices. However, due to
our hardware limitation, we can not set two different frequencies for two channels. Therefore, we only
set up one common frequency for both channels in order to receive both types of files.

For the improvement of our overall system, there are aspects in our design that could be
approached to improve the performance of our system. In the communication aspect of our system, we
could improve the design by modifying the gain values which would increase the transmission power of
the system. Additionally, with larger antennas we would be able to receive weaker signals. We did not
perform a regression testing.

10

EE486C:Capstone Design
Team 3: Wildfire Drone
March 26th, 2021

APPENDIXES

11

EE486C:Capstone Design
Team 3: Wildfire Drone
March 26th, 2021

Appendix A. Base Station Software Defined Radio (SDR) Python Script

We have several functions for SDR transmissions for the base station, they are named as tb1, tb2. tb1 is
receiving function and tb2 is transmitting function, Transmission function will be triggered by the size
which file will be transmitted. Once it is not zero byte, the file will be sent to Drone. And our code is
constantly receiving the data from the drone.

{ def main(top block cls 1=Basestation 3,top block cls 2=Basestation_ 1,options=None) :
open ('/home/ziming/Documents/Happy 1l.txt','a').close()
open ('/home/ziming/Documents/Happy.txt', 'a').close ()
open ('/home/ziming/Documents/Happy.jpg', 'a') .close ()
gapp = Qt.QApplication(sys.argv)
tbl = top block cls 1()
tbl.start ()

Jpg count number = 1

Il
—

Txt count number
filesize = 0
filesize 1 = 0
filesize 2 = 0
while 1:
Deter mode = os.path.getsize('/home/ziming/Documents/mod.txt")
filesize = os.path.getsize('/home/ziming/Documents/Happy 1.txt')
if filesize != O0:
tb2 = top block cls 2()
tb2.start ()
time.sleep(l)
tb2.stop ()

os.remove ('/home/ziming/Documents/Happy 1.txt')
open ('/home/ziming/Documents/Happy l.txt','a').close()
print ('commond sent')
filesize 1 = os.path.getsize('/home/ziming/Documents/Happy.txt")
if filesize 1 != 0:
if Deter mode ==
if Txt count number > 1
os.remove ('/home/ziming/Documents/Overwirte.txt"')
open ('/home/ziming/Documents/Overwirte.txt', 'a').close ()
textFile = '/home/ziming/Documents/TxT Receiver %d.txt' %
Txt count number
shutil.move ('/home/ziming/Documents/Happy.txt', textFile)
time.sleep (1)
with open('/home/ziming/Documents/TxT Receiver %d.txt' %
Txt count number) as firstfile, open('/home/ziming/Documents/Overwirte.txt','w') as
secondfile:
for line in firstfile:
secondfile.write (line)
secondfile.close()
Txt count number += 1

12

EE486C:Capstone Design

Team 3: Wildfire Drone
March 26th, 2021
open ('/home/ziming/Documents/Happy.txt', 'a').close ()
print ('get txt')
tbl.stop ()
tbl = top block cls 1()
tbl.start ()
else
textFile = '/home/ziming/Documents/JPG Receiver %d.jpg' $%

Jpg count number
shutil.move ('/home/ziming/Documents/Happy.txt', textFile)
Jpg_count number += 1
open ('/home/ziming/Documents/Happy.txt', 'a') .close ()
print ('get jpg')
time.sleep(10)
tbl.stop ()
tbl = top block cls 1()
tbl.start ()

tbl.stop ()

13

EE486C:Capstone Design
Team 3: Wildfire Drone
March 26th, 2021

Appendix B. Drone Software Defined Radio (SDR) Python Script

We have several functions for SDR transmissions for the base station, they are named as tb1, tb2, tb3.
tb1 is receiving function and tb2, tb3 are transmitting functions, Transmission function will be triggered
by the size which file will be transmitted. tb2 is for test transmission and tb3 is for picture transmission.

Once it is not zero byte, the file will be sent to Drone. And our code is constantly receiving the data
from the Base station.

{ def main(top block cls 1=Drone 1 , top block cls 2=Drone 2 , top block cls 4=Drone 4 ,
options=None) :

open ('/home/spring2021/Desktop/Gnu radio
code/backup2/File recevie send/Txt rec.txt','a').close()

open ('/home/spring2021/Desktop/Gnu radio
code/backup2/File recevie send/Txt sent.txt','a').close()

open ('/home/spring2021/Desktop/Capstone/fire scout system/drone station/test images/ThermalFr

ame 0.jpg','a').close()
tbl = top block cls 1()
tbhl.Start ()
count number = 1
filesize = 0
filesize 1 = 0
filesize 2 = 0
while 1:

time.sleep (1)

command = os.path.getsize ('/home/spring2021/Desktop/Gnu radio
code/backup2/Command. txt")

filesize = os.path.getsize ('/home/spring2021/Desktop/Gnu radio
code/backup2/File recevie send/Txt sent.txt')

if filesize != 0: ## have no blank txt
if command == 0: ## send the txt
tb2 = top block cls 2()
tb2.start ()
time.sleep(1l)
tb2.stop ()

os.remove ('/home/spring2021/Desktop/Gnu radio
code/backup2/File recevie send/Txt sent.txt')

open ('/home/spring2021/Desktop/Gnu radio
code/backup2/File recevie send/Txt sent.txt','a').close()

print (' : txt sent')

filesize 1 =

os.path.getsize ('/home/spring2021/Desktop/Capstone/fire scout system/drone station/test image
s/ThermalFrame 0.jpg"')

if filesize 1 !=0 : ## have no blank jpg
if command != 0: ## send the jpg
tb3 = top block cls 4()
tb3.start ()
time.sleep(10)
tb3.stop ()

14

EE486C:Capstone Design
Team 3: Wildfire Drone
March 26th, 2021

os.remove ('/home/spring2021/Desktop/Capstone/fire scout system/drone station/test images/Ther
malFrame 0.jpg')

open ('/home/spring2021/Desktop/Capstone/fire scout system/drone station/test images/ThermalFr
ame 0.jpg','a').close()
print(' : pic sent')

filesize 2 = os.path.getsize('/home/spring2021/Desktop/Gnu radio
code/backup2/File recevie send/Txt rec.txt')
if filesize 2 != 0:
if count number > 1
os.remove ('/home/spring2021/Desktop/Gnu radio

code/backup2/Receive Overwrite.txt')

open ('/home/spring2021/Desktop/Gnu radio
code/backup2/Receive Overwrite.txt','a').close()

textFile = '/home/spring2021/Desktop/Gnu radio
code/backup2/File recevie send/Received all/Receiver %s.txt' % count number

shutil.move ('/home/spring2021/Desktop/Gnu radio
code/backup2/File recevie send/Txt rec.txt', textFile)

open ('/home/spring2021/Desktop/Gnu radio
code/backup2/File recevie send/Txt rec.txt','a').close()

time.sleep(1l)

with open ('/home/spring2021/Desktop/Gnu radio
code/backup2/File recevie send/Received all/Receiver %s.txt' % count number,'r') as
firstfile,
open ('/home/spring2021/Desktop/Capstone/fire scout system/drone station/drone ops.json','w')
as secondfile:

read content from first file
for line in firstfile:

in json = False
for char in line:

The SDR writes extra chars

if char == "{":
in json = True
if char == "}":

secondfile.write (char)
in json = False

if in json:
write content to second file
secondfile.write (char)

print (' : get txt'")
tbl.stop ()

tbl = top block cls 1()
tbl.start ()

count number += 1

15

EE486C:Capstone Design
Team 3: Wildfire Drone
March 26th, 2021

tbl.stop ()

16

EE486C:Capstone Design
Team 3: Wildfire Drone
March 26th, 2021

Appendix C. Global Position System (GPS) Design

The schematic of the implementation of the GPS and compass module (NEO M8N BDS) interfaced with
the Nvidia Jetson Nano

ui
let=on_nano

S

(=]

a.3woc fdk
5ODC
.0_5D
JIDC

L4RT 32 T8 130 5 s04
LART_Z_FX 130 2 5oL

AUDIQ_MCLE
TRAT_CRTE

[
|

™
AxD

i oo
n
|2
nec_mbBin
uz

135 4 _5CLK
TPEETE
TEOCTE

1261 561
b

i
1

SRz fS1
EFLZ_fE0
EFLL_MDE]
EFLL_NIE0
EFI_2 M50
SPI_1_ECK
5P _fE0
5P fE1
1301, 504
1901 BCL
CAM_AF_EM
EPIO_PZO

FFFEF FEFRFEFEFEEEFE EEF F F

[EELFWH
BRIO_FER
ITERTRLE
TN
TEC0 TEEDT

-1
e A
>"5 GHND
pr. A

MZE GHND
w2l GhE
—24 GHE
ﬁ GHE

17

EE486C:Capstone Design
Team 3: Wildfire Drone
March 26th, 2021

Appendix D. Temperature and Humidity Sensor Design

The schematic of the implementation of the BM280 temperature and humidity sensor interfaced with the
Nvidia Jetson Nano

sz B
Bevnr [i
3zme H

w2 TRRTTR, 120 7 5o B—
o R T

12 _32_SCL

ﬁ MLl AULEMELE
135 4 SOIH m

1 |
i 1]

BHEXER
1)

SPLL_CEE
SPLLCEL
130 1 S0a
e B
CAM_HF_EH

GPIEFZE

[="u-rw T
GFIO_PEE
135 0 LRCE
EFLZ_MOS!
135 _a_s0oum

EFFEFF FEEEFFERFEFREEF F 0 R FF
fi
oo JETT T

1A GHn

w2 GHD
w2 GHD
L P
:l;-n GHO
3 cHp
9 Gho
:l.ai GHO

18

